Research Infrastructure

Derek Schafer (dschafer1@unm.edu)

University of New Mexico
Center for Advanced Research Computing
September 29th, 2022

Overview

- Efforts focused into three areas:
 - MPI Advance
 - ExaMPI
 - Experiment Management
- Timeline:

	PY 2020-21	PY 2021-22		PY 2022-23	PY 2023-24		PY 2024-2025
Research Infrastructure	ExaMPI Infrastructure	GPU Support	Pc rtitioned com munication	Partitioned Collectives	User-defined Collectives	Addition Abstraction	
			Par itioned Col ectives	User-defined Collectives	Additional Abstractions		
	Basic Code/Data Infrastructure	Experiment Managemer	nt				·

ExaMPI

- Quick recap:
 - Modern C++ MPI implementation
 - Features strong progress, most of the common MPI 3.1 functions
 - Designed to for experimentation within MPI implementations
- Previous year's goals are complete
- Publication:

D. Schafer, T. Hines, E. D. Suggs, M. Rüfenacht and A. Skjellum, "Overlapping Communication and Computation with ExaMPI's Strong Progress and Modern C++ Design," 2021 Workshop on Exascale MPI (ExaMPI), 2021, pp. 18-26

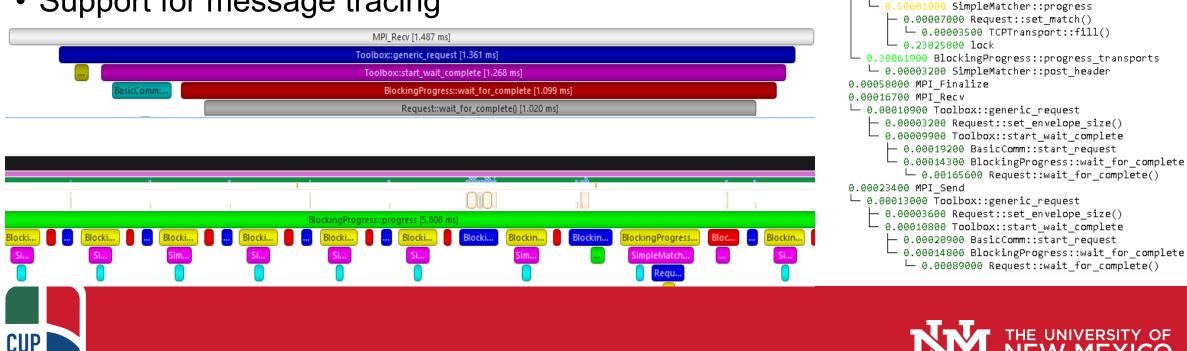
PY 2020-21 PY 2021-22			PY 2022-23			PY 2024-2025
ExaMPI Infrastructure	GPU Support	Partitioned Communication	Partitioned Collectives	User-defined Collectives	Addition Abstractio	

ExaMPI – Accomplished Milestones

- Added basic GPU support
 - GPU Direct not supported yet
 - Each message has a packing buffer (internally)
 - Transports can query type of buffer, ask to pack message
- Added basic partitioned P2P
 - Current algorithm has the sender just report the number of partitions
 - Also supports MPIPCL library

ExaMPI – Other minor features

- Various MPI functions added:
 - Strengthened MPI Datatype support (Struct types, hvectors, some edge cases)
 - Added collective variants (Allgatherv, Alltoallv/w, Gatherv, Scatterv)
 - Miscellaneous functions and constants (i.e., MPI_Cart_sub, MPI_Probe, MPI_Bottom, MPI_AINT)
- Tightened up:
 - Compiler wrappers (mpicc, etc mpifort soon)
 - Compiler support (Clang)
 - CMake detection of ExaMPI
- Added support for LLNL's Irun job system on Lassen
- More transports and use of dynamic connection forming
- Added config file to specify transports, progress options at runtime



Profiling ExaMPI

- Using Caliper to instrument ExaMPI
- Can turn export to Hatchet or NVTX for analysis

Center for Understandable, Performant Exascale Communication Systems

Support for message tracing

0.86450200 BlockingProgress::progress

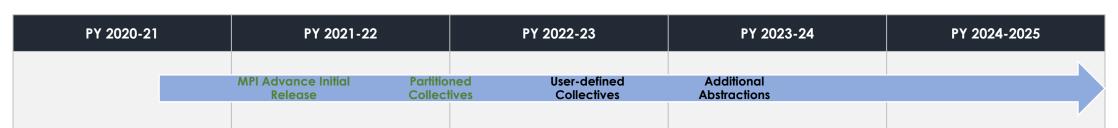
— 0.00013100 Request::release()

─ 0.23286800 BlockingProgress::progress algorithms

□ 0.00063800 TCPTransport::reliable send()

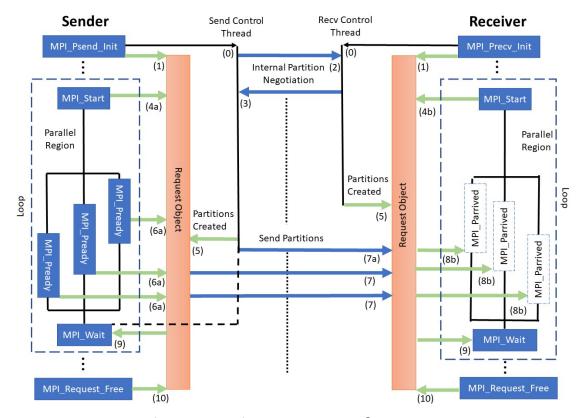
- 0.50924500 BlockingProgress::progress matcher

What's Next for ExaMPI


- Developmental Areas:
 - Fortran support that is needed for some applications
 - MPI File support (possibly through ROMIO library)
 - Other miscellaneous MPI functions that are used by a given application
 - Other network transports (gpu-direct, ucx, etc)
- Research Areas:
 - Measure performance with other benchmarks, applications
 - Adding partitioned collectives to ExaMPI (and/or supporting MPIPCL version)
 - Continue improving message tracing capabilities
 - GPU performance with datatypes, partitioned communication

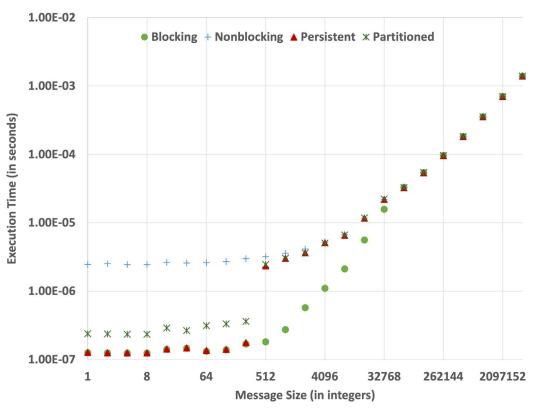
MPI Advance

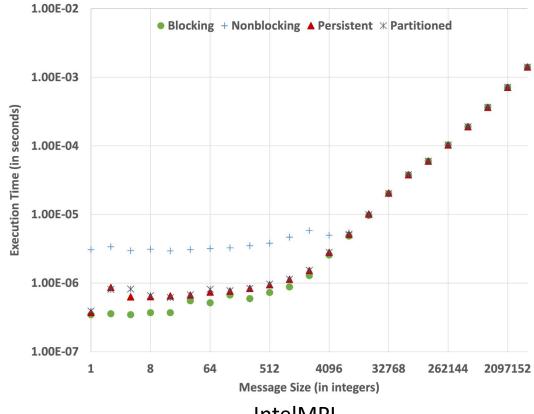
- A collection of MPI libraries showcasing new APIs or optimizations of current MPI APIs
- GitHub organization
- Current libraries:
 - MPIPCL
 - Locality Aware MPI
- MPIPCL successfully used in EuroMPI2022 Tutorials



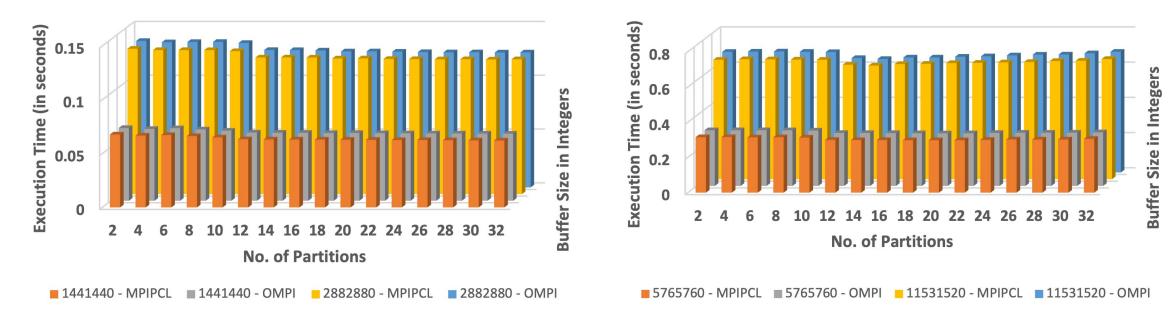
MPIPCL

- Implements all MPI 4.0 partitioned communication APIs
- Is a layered library on top of existing MPI implementations
- Technical details:
 - Uses MPI Persistent P2P APIs
 - Has a progress thread for partition negotiation
 - Requires custom start/wait/test APIs


Architectural Overview of MPIPCL


M. G.F. Dosanjh, A. Worley, D. Schafer, P. Soundararajan, S. Ghafoor, A. Skjellum, P. V. Bangalore, R. E. Grant, Implementation and evaluation of MPI 4.0 partitioned communication libraries, Parallel Computing, Volume 108, 2021, https://doi.org/10.1016/j.parco.2021.102827.

Partitioned Bindings Testing



OpenMPI

IntelMPI

MPIPCL vs. OpenMPI Implementation

- Due to scale of timings, the results are split into two graphs
- The graphs showcase different message sizes

Locality Aware MPI

- Locality-Aware Persistent Neighborhood collectives
 - Neighbor Alltoallv, Neighbor alltoallw
 - Requires use of special topology communication
 - Integrated into Hypre (see Gerald's talk)
- Locality-Aware Collectives: Allgather, Alltoall, Alltoally
- Uses MPI Profiling library to hook into MPI
- Allows for optimizations within existing codebases with minimal changes to existing code

Bienz A, Gropp WD, Olson LN. Reducing communication in algebraic multigrid with multi-step node aware communication. *The International Journal of High Performance Computing Applications*. 2020;34(5):547-561.

MPI Advance Next Steps

- MPIPCL Partitioned Collectives:
 - D. Holmes, et al., "Partitioned Collective Communication," in 2021 Workshop on Exascale MPI (ExaMPI), St. Louis, MO, USA, 2021 pp. 9-17.)
 - First implementation in progress with collaboration from TN Tech
- User-defined collectives
- GPU triggered communication abstractions
- Potential integration of MPI Advance libraries
 - In other software packages, applications
 - Or our own bundle of libraries

Unified Lab Notes Framework

- Proposes an experiment management framework for large-scale HPC systems
- Enhances productivity for the research team
- Promotes experimental integrity and reproducibility
- Provides minimal infrastructure for greater flexibility

System Discovery

- Select Application
- Select Target System
- Collect System Info
- Login/Shell Access

Platform Establishment

- Get OS Details
- ID Runtime Systems
- · Get Comm. Details
- Get Compiler Details
- Update Env. Variables

Application Build

- Read Exp. Config File
- Obtain Source Code
- Resolve Dependencies
- Build the Application

Deploy/Run Experiment

- Update Env. Variables
- Get Input/Exec. Params
- · Choose Input Data Srcs.
- · Generate Job Script
- Submit Job

Process Exp. Results

- · Choose Output Staging Loc.
- Collect Results
- Analyze Results
- Preserve Results and Analysis

Thank you!

Any questions?

